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1.1 Model formation 

 
a) System boundary = country border 

External relations: immigration 
Internal relations: birth rate, death rate, outmigration 
 

b) System boundary = planet Earth 
External relations: none 
Internal relations: birth rate, death rate 
 

c) System boundary = planetary surface and upper atmosphere  
External relations: input from the ocean, mineralization / respiration 
of the biosphere, burning of fossil fuels 
Internal relations: photosynthesis, transfer into the ocean 
(also see Fig. 5.12) 
 

d) System boundary  = water surface and boundary to the (non-reactive) 
sediment 
External relations: Pb content of the sedimenting particles 
Internal relations: re-solution of Pb via pore water into the lake, 
transfer into the non-reactive (deep) sediment 
 
 

1.2 Solar system 
 

a) Gravitational forces between the planets and the sun 
 

b) None 
 

c) Gravitational forces between the solar system and other fixed stars 
(external relation) 

 
 
1.3 From chemical elements to nuclear physics 

 
1. Collecting: searching for chemical elements and their distinction from 

molecules 
 

2. Organizing: finding elements with related properties, such as noble 
gases, alkaline metals, alkaline earth metals, etc. 
 

3. Understanding: Bohr model of atoms, electron shells 
 

4. Generalizing: quantum mechanics, Pauli principle for electrons 
 

5. Predicting: completing the periodic system, transuranic elements 



2.1 Mass balance 
 

a) 
d
d
M
t

 =  (input from factory) – (transfer into atmosphere) – (chemical 

decomposition in the lake) – (outflow) 
 

b) 
d
d
M
t

 =  (transfer into atmosphere) – (sorption and sedimentation) – 

 (chemical decomposition) – (outflow) 
 

 Note: the substance mass entering the lake due to the accident is 
described by the initial condition Mo = M(t=0). 

 
 

2.2 Determining the dimension of parameters 
 

[ ] [ ] [ ] [ ]3 1 2 1 1 1 3 1
1 2 3 4= ML  T ; = L  T ; = L T ; = M  L  Tk k k k− − − − − −  

 
 
2.3 Phosphorus sedimentation 
 

10 m yr−1 , the mean „sinking velocity“ of phosphorus 
 
 
2.4 Bed of nails 
 

 Bernoulli numbers for n = 8: 
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 Probability for box m = 0: 
70 = 0.273
256

 

 
 
 
 
3.1 Dimensional Henry coefficient 
 

 KH⎡⎣ ⎤⎦ = L2T−2 ,  Units e.g. (atm L mol−1) or (bar m3kg−1)  
 

Ka/w = HK
RT

  ( R : gas constant, T : absolute temperature) 

 



3.2 Henry coefficient of methyl bromide 
 

1 (6.5 0.5) atm L molHK
−= ±  

 

Ka/w =
(6.5± 0.5)

24.0
= 0.27± 0.02       (with R = 0.082 L atm mol−1  K−1,  T  = 293 K)  

 
 

3.3 Methyl bromide as ozone killer 
 

Methyl bromide mass = 67.5 mol = 6.4  kg 
 
 
3.4  Nonlinear sorption isotherm 
  

The usual expression for sorption equilibria has the form 
 ( )mmin aqC q C= . In double logarithmic form, this corresponds to a 

linear regression: ln( ) ln( ) lnaqminC m C q= ⋅ + . 

 
The model is not entirely satisfactory. For higher concentrations, it 
systematically overestimates minC  (see figure). As alternative, we use 
the following model (Michaelis-Menten model): 

 aq
min

aq

C
C a

b C
= ⋅

+
 

Here, the parameter a represents the saturation concentration and b 
the value of Caq at which half of the (sorption) saturation is reached. 
This second model shows a much better fit to the measured data. 
 

 

  
 
 
 



3.5 Economic theory: supply and demand 
 

a) Intercept point of the curves 
 

b) Price rises 
 
c) More machines sold, price sinks 

 
 
 
 
4.1 Adjustment behavior 
 

(as in Fig. 4.3) 
 

 
4.2 Radioactive decay 
 

a) Rn
Rn Rn Rn Rn( ) ( )e tN t N N N λ−∞ ° ∞= + −  

 
  with 6 1 1

Ra Rn1.187 10 d , 0.1824 dλ λ− − −= × =  

 NRn
 = 5×104atoms/liter  

  

 NRn
∞ =

λRa

λRn

NRa = 650 atoms/liter  

 
b) ,  Ra, Rni i iA N iλ= =  

 ( ) ( )Rn Rn Rn Rn
RntA t A A A e λ−∞ ° ∞= + −  

 with   ARn
∞ = ARa =119 decays/liter/d

ARn
° =  9.12 x 103  decays/liter/d

 

Zeit t 

1/2 

1/2 

Cold
∞

 

Cnew
∞

 

Time t 



 
  
4.3 Cars in a parking lot  
 

a) 425 parking spots 
 
b) 100 minutes 
 
c) 3.2 hours  

 
 
4.4  Phosphorus in a lake with sedimentation 

 
 C∞ 10 t/yr( ) = 40 mg m−3   (i.e. the current state of the lake corresponds to the 

steady state of the current input) 
 

 C∞ 6 t/yr( ) = 24 mg m−3  

 
 τ5% = 2.4 yr  
 
 

4.5 Exponential immigration 
 
 1975:  Immigration  0.25 x 106 yr -1 
 
 2000: Immigration  1.19 x 106 yr -1 
   
  Population  35.1 x 106 
 
 

4.6  Lake water temperature 
 

a) 
d ( ) ( ) ( ) with ( )
d w eq eq wk k k k k k
t Θ Θ
Θ = + Θ −Θ = Θ −Θ = +  

  
b) Annual variation corresponds to 10.017dω −=  

 

1 1 1

1

1

Lake A:  0.03d 0.02 d 0.05 d

0.017darctan 18.8 ; 19days
0.05d

A

A A

k

Tη

− − −

−

−

= + =

⎛ ⎞
= = ° Δ ≈⎜ ⎟

⎝ ⎠

 

c) Lake B with identical thermal properties, without through-flow 
 

 

1

1

1

Lake B:  0.03d

0.017darctan 29.5 ; 30days
0.03d

A

A A

k

Tη

−

−

−

=

⎛ ⎞
= = ° Δ ≈⎜ ⎟

⎝ ⎠

 

d) ,

2 2
0.947amp A A

amp A

k
k ω

Θ
= =

Θ +    ;   

,

2 2
0.870amp B B

amp B

k
k ω

Θ
= =

Θ +  



 

,

,

1.088amp A

amp B

Θ
=

Θ  
 
 Lake A is better coupled to the annual temperature forcing and thus 

has slightly larger temperature amplitudes. 
 

 
4.7 Dye in a well 

 a) ( ) 1

4
0

d ,     0.06 h
d
                                  5 x 10  g/L

r w w
C k k C k
t

C

−

−

= − + =

=

 

 
 b) tcrit =  24.5 h  
 

 c) 
dC
dt

= −krC,   tcrit =  39 h  

 
 

4.8 Degradation process in a sewage plant 
 

 a) 1d 1   ,                   0.5 d
d w in w w

w

C k C k C R k
t τ

−= − − = =  

 

b) Since measurements show that C∞ = 1
20
Cin ,  it follows that  R =19 kwC

∞  

 
 c) 119 9.5 dr wk k −= =  
 

 d) 5%
3 0.15 d 3.6 h

r wk k
τ = = =

+
 

 
 e) τ5% = 0.15 d (τ5%  does not change, since the system is linear!)   

 
 
4.9  Copper accumulation on farm land 
 

 a) 
dm
dt

= j − km m : Cu per m2  

 
j :  Input per m2  and year
k = 0.006 yr−1

 

 b) 27000 mg mm∞ −=  
 
 c) τ5% = 500 yr  

 



 d) k = 0.007 yr−1  
 
 e) No, because input growth rate β = 0.01 is not   k  
 
 
4.10  Tritium in a lake 
 

 The relevant parameters have the following values: 
 

 

1

1

Decay constant of tritium: 0.058 yr

0.1 yr

1 Bq/L (Bq = Becquerel)

0.44 Bq/L

w

in in

lake

k
k
C C
C C

−
λ

−

°

°

=

=

≡ =

= =

 

a) 
( )d ,  

d w in w w in t t w
C k C k k C k C k C k k k
t
= − + = − = +λ λ

 

 

b) Since C°
Cin

= 0.44,   
kw

kw + kλ
= 0.63,  there must be an additional 

elimination  process. 
 
 Assumption: This elimination is first order with 

 kr = kw
Cin
C ° − kw + kλ( ) = 0.069 yr−1,  i.e. kt = kw + kλ + kr = 0.227 yr−1  

c) Cin t( ) =Cin° eβ t  with β = 0.02 yr−1

C t =10yr( ) = 0.50 Bq/L,  C∞ t =10yr( ) = 0.54 Bq/L

 

 
 à Perturbation by increasing input is nearly adiabatic. 
 

d) Like c), but with β = 1
1 yr

ln 1.2( ) = 0.182 yr−1  

 ( )10yr 1.53 Bq/L,   ( 10yr) 2.72 Bq/LC t C t∞= = = =  

 
 à strongly non-adiabatic disturbance 

 
 



5.1 Reactor with two substances 
 
 For parameters from Examples 5.2 and 5.3, in particular 

1 10.04 h ,   in h :wk t− −⎡ ⎤= ⎣ ⎦  

 

 
( )
( )

3 0.04 0.55
1

3 0.04 0.55
2

mol m 0.091 0.0196 e 0.0714 e

mol m 0.909 0.9804 e 0.0714 e

t t

t t

C t

C t

− − −

− − −

⎡ ⎤ = − −⎣ ⎦
⎡ ⎤ = − +⎣ ⎦

 

 
 
5.2 Chain of lakes 

 a) 1,21
1 1 1

1

1,22 2
2 1 2 2

1 2

d
d
d
d

QM J M k M
t V

QM QJ M M k M
t V V

λ

λ

= − −

= + − −

 

  This results in an identical coefficient matrix as in Eq. (5.34). 

 b) 
tot

1 2 tot 2 2
d
d
M J J k M Q C
t λ= + − −

 

  The additional variable 2C  would be proportional to totM  and could by 

replaced provided that (1) 2 0J = ; and (2) the system is at (quasi) 
steady state. Then the following holds: 

  tot
2

1 2
2

1,2 2

1

MC
V QV k
Q V λ

=
⎡ ⎤⎛ ⎞
+ +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

 

 c) Only the weighted sum of the concentration, 1 1 2 2

1 2

CV C VC
V V
+=
+

 satisfies 

conservation of mass. 
 
 
5.3  Radioactive decay chain with three isotopes 
 

  ( )

( )

1 3 1

1

1

d 0.182d 7.6x10  h
d

d 1.55 h
d

d 2.10 h
d

X
X X X

Y
Y X Y Y

Z
Z Y Z Z

A A
t
A A A
t
A A A
t

− − −

−

−

= −λ λ = =

= λ − λ =

= λ − λ =

 

  Since 

( ) ( ) ( ) ( ) X

,     , for times  with 1 or 1, the following approximation holds :

0 e
Y Z X Y Z

t
Y Z X X

t t t
A t A t A t A λ−

λ λ λ λ λ

=

? ? ?
: :

 



 
 
5.4  Tritium in a sewage treatment plant 
 

 

( )1
1 1 1 2

2
2 1 2 2

4 1 1

1/ 2 1

3 1 1
1 2

1 2

da)
d
d
d

ln2 1.58 x 10 d ,  1 d

6 x 10 d ,  0.02 d

F w F

F F

w

F F
F F

A k k k A k A
t
A k A k A
t

Qk k
V

Q Qk k
V V

− − −

− − −

= − + + +

= −

= = = =

= = = =

λ

λ τ

 

 
b) Since is much small than other specific rates, decay plays no rolekλ  
 
c) 1 2 2,   w Fk kλ − λ −: :  

 
d) ( ) ( )1 2const. exp - FA t k t=  

 
 
5.5  Stratified lake with sedimentation 

 a) 1 w ex,1 tot

2 ex,2

In :  100 d; 20 d; 16.7 d
In :  40 d
V
V

τ = τ = τ =
τ =

 

 
 b through d) 
   

 b) 
conservative 

c) 
radioactive 

d) conservative + 
    sedimentating 

Steady-state conc’ns: 
3

1 mg mC∞ −⎡ ⎤⎣ ⎦  

2C
∞  

 
100 
 
100 

 
29 
 
21 

 
46 
 
54 

Eigenvalues 

[ ]

1

1
2

5%
1

d

d

3 d

−

⎡ ⎤λ ⎣ ⎦
⎡ ⎤λ ⎣ ⎦

τ
λ

-1

:

 

 
-0.00305 
 
-0.0819 
 
980 

 
-0.0131 
 
-0.0919 
 
230 

 
-0.0063 
 
-0.104 
 
480 

 
e) Note that the smaller sedimentation rate in the deep water leads to a 

slightly increased concentration in the volume 2V  (case d). 
 
 
 



5.6  Conservative substance in a chain of lakes 

 

a) C1 t( ) =C1
°e−kw1t

C2 t( ) =C1
° kw2

kw1 − kw2

e−kw2t − e−kw1t( )
with kw1 =

Q°

V1

=1 d−1,  kw2 =
Q°

V2

= 0.05 d−1,  C1
° = M
V1

= 2 gm−3

Adjustment times:  t1 = 5.3 d,   t2 = 46 d 

 

 

 b) C2
max = 0.085 gm−3,  reached at time tmax = 3.2 d  

 
 c) 1

2 0.05 dwk
−α =:  

 
d) Eigenvalues of the system with pumping: 

  
1

1
1

2

5.2 d

0.048 d

−

−

λ = −

λ = −
 

 
  As a result of the high pumping power PQ  the system ( )1 2V V+  can 

approximately be described as completely mixed, with the outflow rate 
Q°

V1 +V2

= ktot = 0.0476 d−1  −λ2

and initial concentration Ctot
° = M

V1 +V2

= 0.095 gm−3 = 95 mg m−3

 

  The critical concentration 
Ckrit =10 µg/L =  10 mg m−3  is underrun after the time tkrit  = 47 d .  

 
e) See d). 

 
 
5.7  Temperature control by a thermostat 
 

 a) 1 2
d d; ( )
d d o
y xL k x k y y
t t
= − + = −

    Purely imaginary eigenvalues ( )1/21 2i i k kλ = ±  

   1steady state at , is not reached (undamped oscillations)oy y x L k∞ ∞= =  
 b)  If equations are altered such that x cannot drop below 0, the system 

becomes nonlinear. 

 
 c)  k1 and k2 should be large. 
 
  



d)  The modification introduced in b) would dampen the oscillations. 
Alternatively, the ‘valve equation’ could be modified such that at large 
valve positions x the opening process is slowed down. 

 

       2
d ( )
d o
x k y y k x
t ε= − −  

 
 
 
 
6.1  Mountain lake with time-dependent elimination rate 
 

a) System is linear 
 
b) No 

 
c) ( ) ( ) und inj t k t  are external relations 

 
d) Integration piece-wise for periods with const.,k =  whereby the terminal 

value becomes the initial value of the next period. 
 
 
6.2   Fish in a pond 
 
  Note: The problem refers to Example 6.2 in Section 6.1.3. 
 

 a) 
max

d 1
d p f
N Nk N k N
t N

° ⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 

  
1 2 max

1 2

Fixed point:   0,   

If   >  (see question d),  is unstable,  stable.

p f

p

p f

k k
N N N

k

k k N N

°
∞ ∞

°

° ∞ ∞

−
= =

 

 b) 

   
 

 c) max
2

1 . Then, the yield is 
2 2f p f f

Nk k Y k N k° ∞= = =  

 
 d) p fk k° >  

k f N  for k f > kp
°  

fk N  

logistical growth 

2N
∞  



6.3  Jacobian matrix of the Lotka-Volterra model 
 

( ) ( )
( )

1 3 3

3 2 3

  
,

k k Y k X
B X Y

k Y k k X

− −⎛ ⎞
= ⎜ ⎟⎜ ⎟− +⎝ ⎠

 

 

( ) 1
1 1

2

0
0,  0

0
k

B X Y
k

∞ ∞ ⎛ ⎞
= = = ⎜ ⎟−⎝ ⎠

 

 
The fixed point is a saddle point (Fig. 6.11c) with stability along the Y 
axis, instability along the X axis. 

 

  22 1
2 2

13 3

0
,  

0
kk kB X Y

kk k
∞ ∞ −⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 

  Eigenvalues λ j = ±i k1k2( )1/2
 →  center (Fig. 6.11f)  

 
  Note: It can be shown that the model exhibits an undamped oscillation 

(see Fig. 6.19c). 
 
 
6.4  Predator-prey model with self-interaction 
 
 

  Jacobian matrix   ( ) ( )
( )

1 3 4 3

3 2 3

2   
,

k k Y k X k X
B X Y

k Y k k X

− − −⎛ ⎞
= ⎜ ⎟⎜ ⎟− +⎝ ⎠

 

 

  At the fixed point    X 2
∞ =

k2

k3

 , Y2
∞ =

k1

k3

− ε
k3

  with  ε =
k2k4

k3

: 

  

  ( ) 2
2 2

1

 
,

( )    0
k

B X Y
k

∞ ∞ −ε −⎛ ⎞
= ⎜ ⎟− ε⎝ ⎠

 

 

  Eigenvalues }{ 1/ 22
2 1 2

1 4 4
2j k k kλ ε ε ε⎡ ⎤= − ± + −⎣ ⎦

 

 

  If 4k  is so small that 
2

1 2 24
k k kε> + ε , then the eigenvalues are conjugate-

complex with negative real part (case d in Fig. 6.11, also see Fig. 5.11a). 
 
 
 



6.5  Semi-trivial fixed point of the Holling-Tanner model 
 

  Jacobian matrix B Xk ,  Y = 0( ) = −r   −w
Xk

X k + KB
0 s

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 

 
  Eigenvalues: ( )1 2,   , 0r s r sλ = − λ = >  

   
  →  Case c) in Fig. 6.11 (saddle point) 
 
 
 

 
  
  
 
 
6.6 Nonlinear biomass growth in a pond 
  
 Note that wf  has the dimension (concentration)−2T−1⎡⎣ ⎤⎦ . 

 
 The solution to this problem becomes clearer if we replace the variable 

pair (N, B) by ( ),  M N B N= + . 

 
c) If condition (I) of answer d) is met, then the system has three fixed 

points: 
 

 (A) MA
∞ =

JN
Q
, NA

∞ =
JN
Q

i.e. BA
∞ = 0( )  

 

 (B) MB
∞ = MA

∞ =
JN
Q
; NB

∞ = 1
2
N0 − Ncrit( )  

 

 (C) MC
∞ = MA

∞ =
JN
Q
; NC

∞ = 1
2
N0 + Ncrit( )  

  with 
1/2

2
0 4 ,a q

crit q
w

k k QN N k
f V
+⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

 

  stability →  see d) 
 

Xk  
X  

Y  



d) Condition I: biomass B can only be created if 
1/2

0 2 , i.e.  is reala q
crit

w

k k
N N

k
+⎛ ⎞

≥ ⎜ ⎟
⎝ ⎠

 

Fixed point (A) is stable for 
JN
Q

< NB
∞  and 

JN
Q

> NC
∞  

Fixed point (C) is stable for N
B C

JN N
Q

∞ ∞≤ ≤  

Fixed point (B) is unstable. 
 

 
6.7  Lotka-Volterra with two prey animals 
   

  a) 
dX1
dt

= k1X1 − k4X1Y  

   
dX 2
dt

= k2X 2 − k5X 2Y  

   
dY
dt

= k4X1Y + k5X 2Y − k3Y  

 
b) 3 fixed points 

(I) Trivial fixed point X1 = X 2 = Y = 0  

 stable with respect to Y , unstable with respect to X1  and X 2  

(II) X1
∞ =

k3
k4
, X 2

∞ = 0, Y ∞ =
k1
k4

 

 Center if 1 2

4 5

,k k
k k

>  otherwise unstable 

 

(III) X1
∞ = 0, X 2

∞ =
k3
k5
, Y ∞ =

k2
k5

 

 Center if 1 2

4 5

,k k
k k

<  otherwise unstable 

 
c) Species with a higher growth/predation coefficient 

k1
k4

 for X1,  
k2
k5

 for X 2
⎛

⎝⎜
⎞

⎠⎟
 survives. In our example, X 2  survives 

although X1  has a higher growth rate ( )1 2 . k k>  

 Predation pressure on X 2  is smaller than on 1X  ( )5 4 .k k<  

 
 
 



6.8  Lotka-Volterra with prey niche 
 

  a) 
dX1
dt

= k1 − k4( )X1 + k5X 2 − k3X1Y  

   
dX 2
dt

= k1 − k5( )X 2 + k4X1  

   
dY
dt

= k3X1Y − k2Y  

 
b) For 1 5k k<  the following non-trivial fixed point exists: 

 

X1
∞ =

k2
k3
, X 2

∞ =
k2k4

k3 k5 − k1( )
Y ∞ =

k1 k5 − k1 + k4( )
k3 k5 − k1( )

 

 
c) If 1 5 ,k k>  the prey in the niche ( )2B  could increase unchecked, and 

then (by migrating out of the niche) help the predator achieve 
infinite growth. We can “fix” this behavior by replacing the linear 
prey growth by a logistical function: 

  i =1,2 k1Xi → k1
* Xi
X i + Xkrit

 

 
 
6.9  Competition for living space 
 

 a) 1 2
dA ( , )
d Ak A k AB f A B
t
= − ≡

 
 

  
3 4 5

dB ( ) ( , )
d Bk k B B k AB f A B
t
= − − ≡

 
  

 b)  Fixed points:  

  

1 1

3 4 1 1
2 2

5 2 5 2

3
3 3

4

(1) 0 ; 0

(2) 2 ; 1

(3) 0 ;

A B
k k k kA B
k k k k

kA B
k

∞ ∞

∞ ∞

∞ ∞

= =

= − = = =

= =

 

 
  



c)  Stability of fixed point 2 (A and B non zero). 
 

 
2 3 1 4

5

1 1 4
5

2 2

10 ( )
0 2

Jacobian matrix B( , )
4 4

k k k k
k

A B
k k kk
k k

⎛ ⎞−⎜ ⎟ ⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟ − −⎝ ⎠− −⎜ ⎟
⎝ ⎠

 

  
Eigenvalues: 1,2 2 2 (damped oscillations)iλ = − ±  

 
 
 
 
7.1  Elimination of the inhomogeneous term 
 

  1-dimensional: With V
n( )
=V n( ) + I

a0 −1
  it follows that  V

n+1( )
=a0V

n( )
 

  q-th order: prove Eq. (7.17). 
 
 
7.2  Consumer loan 
 
  ( )121.025 1.345= → annual interest 34.5% 

 
 
7.3  Reactor with chloride 
 

a) 50 kg 
 
b) 14 weeks 

 
 

7.4  Returnable bottles 
 

a) Use the method of the characteristic equation. 
 

b) Because the system is linear, we can choose a different approach for the 
first year and simply combine that with the original result, whereby the 
index n is moved by a month: 

 

  

N n( ) = N1
n( ) + N2

n( ) with

N1
n( ) = 5,300 λ1( )n − λ2( )n⎡

⎣⎢
⎤
⎦⎥

N2
n( ) = 50,000− 48,850 λ1( )n−1

−1,150 λ2( )n−1
;   n ≥1

λ1 = 0.822, λ2 = − 0.122

 

 
  
 



7.5  Fibonacci numbers 
 

  
y n( ) = 1

5
λ1( )n − λ2( )n⎡

⎣⎢
⎤
⎦⎥

with  λ1 =
1
2
1+ 5( ); λ2 =

1
2
1− 5( )

 

 
 
7.6  Gambling 
 
 a) ( ) ( )0 02Y X>  
 
 b) ( ) ( )0 02Y X=  
 
 
7.7  Students in a study program 
 
  550 
 
 
7.8  Fish in a pond 

 b) N1
i( ) =10,000+ 0.5 N1

i−1( ) + 2 N2
i−1( )

N2
i( ) = 0.1 N1

i−1( )
 

 

c) Use N2
i−1( ) = 0.1 N1

i−2( )

→10,000− N1
i( ) + 0.5 N1

i−1( ) + 0.2 N1
i−2( ) = 0

 

 d) N1
1( ) =10,000; N1

2( ) =15,000; N1
3( ) =19,500

N1
4( ) = 22,750; N1

5( ) = 25,275

 

 

 e) N1
i( )
= N1

i( ) − 33,333.3  makes the equation homogeneous. 

 
  Characteristic exponents: 

  ( )1,2
1 0.5 1.05
2

λ = ±  

  Initial values: note that ( )0
2 0N =  corresponds to ( )1

1 0N − = . 
 

  N1
i( ) = 33,333.3− 31,305.3 λ1( )i − 2,028.0 λ2( )i  



 f) N1
∞( ) = 33,333.3

N2
∞( ) = 3,333.3

 

 
 
 
 
8.1  Tetrachloroethylene in a pond 
 

a) 69 d 
 
b) 34.5 d 

 
 
8.2  Oxygen in the lake 
 
  This problem relates to Example 8.2 in Section 8.2.5. 
 
  Initially, AC  increases slightly (steady state concentration 12.8 mg/L) 

but as the deep water becomes anoxic, decreases to the slightly lower 
steady state value of 11.7 mg/L. 

 
 
8.3  Geothermal heat flux at the bottom of a lake 
 

a) With 1d 0.175 km  
d
T
x

−=  (x: Depth in the sediment, positive 

downwards) 
we get 2 0.10 WmthF

−= −   (Flux, positive upwards) 
  
 (Caution: the correct unit for thγ  is 1 1Wm K− − ) 
 

b) 3 1d 4.8 x 10 km
d
T
z

− −= +  (temperature increases with water depth z.) 

 
 

8.4  Vertical turbulent diffusivity 
 
 a) 2 1 5 2 12.0m d 2.32 x 10 m szK

− − −= =  
 
 b) 4 2 13.0 x 10  Bq m dRnF

− −=  
 
 
8.5  Péclet und Damköhler numbers 
 

 a) 
2 / 2 1 1 Pe
/ 2 2

diff L L

ad L

x D x v
x v D

τ
= = =

τ
 



 

 b) 
( )

2

2 2

2 / 2 2 Da
/

diff r r

ad r

x D k Dk
x vv k

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
 

 
  (the factor 2 plays no role for this type of consideration!) 
 
 
8.6  Volatile substance in the groundwater 
   
 a) + b) 

   
  
 c) 3 3 11.4 x 10 mg m dF − − −=  
 
 d) 1143 d 3.1 yrdiffτ = =  

 
 e) Pe 57,=  that is, transport flux is dominated by advection 
 
  40 dadvτ =  
 
  3 1

00.15 0.083 mg m dadvF v C − −= ⋅ =  
 
 
8.7  Transport and reaction in a lake’s water column 
 

a) Chemical A = Curve 4; B = 2; C = 3; D = 1 
 

b) Vertical transport equation of chemical A and D. For chemical A, the 
first-order reaction rate kr = 0. z is vertical coordinate, z = 0 at water 
surface. 

  
2

2

d 0
dr

C Ck C D
t z

∂ = − + =
∂

 

 
  Solution for chemical A:  

  ( ) 0 . Since 0 (no flux at sediment!), we get 0.
bz z

CC z C az a
z =

∂= + = =
∂  

   

3
0 5.5 mg mC −=  

Groundwater 

 

b) 
  4 m 

a) 



  For chemical D:
 

 

  ( )
1/2

 e e ,z z rkC z p q
D

λ −λ ⎛ ⎞= + λ = ⎜ ⎟⎝ ⎠
     

 
  From the boundary conditions ( ) 00C z C= =  and 

  0
bz z

C
z =

∂ =
∂

, the coefficients p and q are: 

  0 0
e e;

e e e e

b b

b b b b

z z

z z z zp C q C
−λ λ

λ −λ λ −λ= =
+ +

 

 
  Inserting p and q yields: 

  ( ) ( )
[ ]0

cosh
cosh

bz z
C z C

z
λ −⎡ ⎤⎣ ⎦=

λ
 

 
c) For fast reaction ( )rk →∞ , the concentration in those layers in which 

reaction occurs drops sharply. Thus, at the sediment surface the curves 
for the reactive chemicals (B,C,D) are virtually zero. The concentration 
of chemical B drops linearly through the thermocline to virtually zero at 
the oxic/anoxic interface. Chemical C drops sharply from C0 at the 
surface to virtually zero and remains small in the rest of the water 
column. D has the same profile as C, since nothing will be left for 
reaction in the deep anoxic layer. 

 



 
8.8  Radium and tritium in the ocean deep water 
 

 Fdeep
ad  Fdeep

diff  Fsur
ad  Fsur

diff  Decay Sum 
 

Radium 2.00 0.61 0 1.60− 1.6
0 

1.01−  0 
 

Tritium 0 0 2.0−  14.7 12.7−  0 
 
  Note: the numbers in the table are generalized transfer velocities in 

1myr−⎡ ⎤⎣ ⎦ . If we multiply them by the corresponding boundary values 

( BWC  for radium, OWC for tritium, in 3Bq m−⎡ ⎤⎣ ⎦ ), we get the fluxes in 

2 1Bq m a− −⎡ ⎤⎣ ⎦. 

 
 
8.9  Time-dependent diffusion/advection equation 
   

  Note: 
∂
∂t
C x − vxt( ) = −vxC ' with C ' =

dC ξ( )
dξ

 

 

   ( ) 'xC x v t C
x
∂ − =
∂

 

 
 
8.10  Symmetrical diffusion at a boundary surface 
 
 

  ( )
( )

0
1/ 2,  erfc 

2 2 x

C xC x t
D t

⎛ ⎞
= ⎜ ⎟⎜ ⎟⎝ ⎠

 ,  boundary at 0x =  

 

  Note:  ( ) 00,
2
CC x t= =   (for all times 0t >  


